If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-19Y^2-152Y
We move all terms to the left:
-(-19Y^2-152Y)=0
We get rid of parentheses
19Y^2+152Y=0
a = 19; b = 152; c = 0;
Δ = b2-4ac
Δ = 1522-4·19·0
Δ = 23104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{23104}=152$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(152)-152}{2*19}=\frac{-304}{38} =-8 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(152)+152}{2*19}=\frac{0}{38} =0 $
| 9(11)+25+17y+5=180 | | f/3=27 | | 2x11=33 | | 2x=2(x-3x-3) | | -1/5x+3=-25 | | 36x=2(6x+6x+36) | | -492=x-604 | | -9=3+5(x-2) | | 7x-11+4x+58=360 | | 64=126x | | x-782=805 | | (x-3)+(8x-3)=180 | | 87=15+6c | | 2(3X-4)=2(x+6) | | x+477=915 | | 5(2g-4)=24 | | 13=x+-51 | | 3a^2+4a^2=400 | | 3(12)-29+8y+17=180 | | 41=x+-34 | | 16t-t2=60 | | 5x=1=18 | | x-37=-32 | | 10=2+(x/2) | | -17=x+-48 | | 20=4+(x/3) | | 6=3x−1/2·2.4 | | A=2(6x+6x+36) | | |x−5|=3 | | V=x(12-2x)(18-2x) | | 1-2k+(k/2)=-3k | | (3z+1/8)=2z+5 |